On linear models and parameter identifiability in experimental biological systems.
نویسندگان
چکیده
A key problem in the biological sciences is to be able to reliably estimate model parameters from experimental data. This is the well-known problem of parameter identifiability. Here, methods are developed for biologists and other modelers to design optimal experiments to ensure parameter identifiability at a structural level. The main results of the paper are to provide a general methodology for extracting parameters of linear models from an experimentally measured scalar function - the transfer function - and a framework for the identifiability analysis of complex model structures using linked models. Linked models are composed by letting the output of one model become the input to another model which is then experimentally measured. The linked model framework is shown to be applicable to designing experiments to identify the measured sub-model and recover the input from the unmeasured sub-model, even in cases that the unmeasured sub-model is not identifiable. Applications for a set of common model features are demonstrated, and the results combined in an example application to a real-world experimental system. These applications emphasize the insight into answering "where to measure" and "which experimental scheme" questions provided by both the parameter extraction methodology and the linked model framework. The aim is to demonstrate the tools' usefulness in guiding experimental design to maximize parameter information obtained, based on the model structure.
منابع مشابه
Addressing parameter identifiability by model-based experimentation.
Mathematical description of biological processes such as gene regulatory networks or signalling pathways by dynamic models utilising ordinary differential equations faces challenges if the model parameters like rate constants are estimated from incomplete and noisy experimental data. Typically, biological networks are only partially observed. Only a fraction of the modelled molecular species is...
متن کاملIdentifiability and identification of switched linear biological models
Pulse is often used to excite biological systems. The inputs such as irrigation, therapy, and treatments to biological systems are also equivalent to pulses. This makes the biological system behave as switched models under the function of the input. To reduce difficulty in model parameter estimation, the system could be represented as a switched linear model under the pulse excitation. In this ...
متن کاملGenSSI: a software toolbox for structural identifiability analysis of biological models
SUMMARY Mathematical modeling has a key role in systems biology. Model building is often regarded as an iterative loop involving several tasks, among which the estimation of unknown parameters of the model from a certain set of experimental data is of central importance. This problem of parameter estimation has many possible pitfalls, and modelers should be very careful to avoid them. Many of s...
متن کاملData-based identifiability analysis of non-linear dynamical models
MOTIVATION Mathematical modelling of biological systems is becoming a standard approach to investigate complex dynamic, non-linear interaction mechanisms in cellular processes. However, models may comprise non-identifiable parameters which cannot be unambiguously determined. Non-identifiability manifests itself in functionally related parameters, which are difficult to detect. RESULTS We pres...
متن کاملSloppy models can be identifiable
Dynamic models of biochemical networks typically consist of sets of non-linear ordinary differential equations involving states (concentrations or amounts of the components of the network) and parameters describing the reaction kinetics. Unfortunately, in most cases the parameters are completely unknown or only rough estimates of their values are available. Therefore, their values must be estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 358 شماره
صفحات -
تاریخ انتشار 2014